Fondamenti di Teoria delle Basi di Dati

Riccardo Torlone

Parte 3: Tecniche di dimostrazione

Dimostrazioni formali e informali

Dimostrazione (formale): procedimento per cui, in un certo contesto, un enunciato (la tesi) viene derivato in maniera formale a partire da alcune ipotesi e da un insieme di nozioni accettate per evidenza (gli assiomi) mediante un insieme di regole formali (derivazioni logiche) che permettono di generare un enunciato a partire da altri enunciati

$$P_1 \wedge \ldots \wedge P_n \wedge A_1 \wedge \ldots \wedge A_m \to Q$$

In pratica si usano dimostrazioni informali: descrizioni discorsive dei passi principali della dimostrazione nelle quali si omettono i dettagli

Esempio

- Theorem Let x and y be two integers. If x is even and y is even then xy is also even.
- **Proof.** Let *x* and *y* be two even integers. We can take *n* and *m* such that x = 2n and y = 2m. Then, xy = 2(2nm). Since 2nm is an integer, xy is an even number. \Box

Anche l'enunciato è informale

- Let x and y be two integers. [Il contesto]
- Assume x and y are even. [Le ipotesi: P₁ ∧...∧ P_n]
 Then, xy is even. [La tesi : Q]

Dettagli omessi nella dimostrazione

- 1. Let x and y be two even integers.
 - Implicit universal quantification
- 2. We can take n and m such that x = 2n and y = 2m.
 - Implicit use of the axiom: x is even if and only if there exists n such that x = 2n
 - Implicit universal quantification for x and y
 - Implicit existential quantification for n and m
- 3. Then, xy = 2(2nm)
 - Implicit use of rules of arithmetic and of logical implication
- 4. Since 2nm is an integer, xy is an even number :
 - Implicit universal quantification of the definition of an even number
 - Implicit use of logical implication

R. Torlone: Fondamenti di Teoria delle Basi di Dati, Parte 1

Regole

- The goal of a proof is to be read by humans (in particular yourself) in order to convince those humans
- A reader will be convinced by the proof if he/she can check that he could translate each step of the proof into one or several steps of a formal proof
- A reader will be convinced by the proof if he/she can check that all the steps are valid

Tecniche di dimostrazione

- Disproof by counter example
 - Conjecture. If n is a positive integer, then $n! < n^3$
- Direct proof
- (1) Assume P (2) Deduce Q
 - Example. If x and y are even, then xy is even.
- Exhaustive proof
- All cases have been exhausted (and so are you ...).
 - Example. Propositional logic formula (the truth table is finite)

Tecniche di dimostrazione

- Proof by contradiction
- (1) Assume Q (the consequent is false) (2) Deduce a contradiction
 - This technique relies on the fact that :
 - (1) if $P \rightarrow False$, then P is false
 - (2) Q ^ ¬ Q is always false
- Proof by contraposition
- (1) Assume ¬ Q (the consequent is false) (2) Prove ¬ P (the antecedent is also false)
 - Example. Prove that if n² is odd, then n is odd: prove instead that if n is even, then n² is even
 - This technique relies on the fact that $P \rightarrow Q$ is equivalent to $\neg Q \rightarrow \neg P$

Tecniche di dimostrazione

Proof by induction

- Based on the first principle of mathematical induction
- Let P(k) be an inductive hypothesis. If :
 - (a) P(1) is true (base case)
 - (b) For any k > 1, P(k 1) true implies P(k) true (induction step)
- Then : P(k) is true for all $k \ge 1$
- Example: Let $S(k)=S(k-1)+2^{k-1}(S(1) = 1)$, then $S(k) = 2^k 1$.

Proof

Base case : $S(1) = 1 = 2^1 - 1$. So, P(1) is true.

■ Induction step : Assume that, for k > 1, $S(k-1) = 2^{k-1} - 1$ Then, $S(k) = S(k-1) + 2^{k-1} = 2^{k-1} - 1 + 2^{k-1} = 2^k - 1$.

So, P(k) is also true.

Others

proof by reduction

Proof by example

The author gives only the case n = 2 and suggests that it contains most of the ideas of the general proof.

Proof by intimidation

"Trivial"

- Proof by vigorous handwaving
 - Works well in a classroom or seminar setting.
- Proof by cumbersome notation
 - Best done with access to at least four alphabets and special symbols.
- Proof by exhaustion
 - An issue or two of a journal devoted to your proof is useful.

Proof by omission

- "The reader may easily supply the details.", "The other 253 cases are analogous."
- Proof by obfuscation
 - A long plotless sequence of true and/or meaningless syntactically related statements.

Proof by eminent authority

"I saw Karp in the elevator and he said it was probably NPcomplete."

Proof by personal communication

- "Eight-dimensional colored cycle stripping is NP-complete [Karp, personal communication]."
- Proof by reduction to the wrong problem
 - "To see that infinite-dimensional colored cycle stripping is decidable, we reduce it to the halting problem."

- Proof by reference to inaccessible literature
 - The author cites a simple corollary of a theorem to be found in a privately circulated memoir of the Slovenian Philological Society, 1883.
- Proof by importance
 - A large body of useful consequences all follow from the proposition in question
- Proof by accumulated evidence
 - Long and diligent search has not revealed a counterexample.
- Proof by cosmology
 - The negation of the proposition is unimaginable or meaningless. Popular for proofs of the existence of God.
- Proof by mutual reference
 - In reference A, Theorem 5 is said to follow from Theorem 3 in reference B, which is shown from Corollary 6.2 in reference C, which is an easy consequence of Theorem 5 in reference A.

Proof by picture

A more convincing form of proof by example. Combines well with proof by omission.

Proof by vehement assertion

It is useful to have some kind of authority in relation to the audience.

Proof by ghost reference

Nothing even remotely resembling the cited theorem appears in the reference given.

Proof by forward reference

Reference is usually to a forthcoming paper of the author, which is often not as forthcoming as at first.

Proof by exercise

The reader is left to do the proof as an exercise. Most commonly found in textbooks.